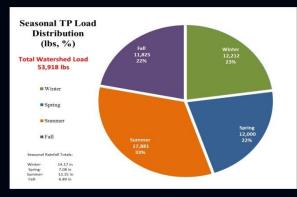
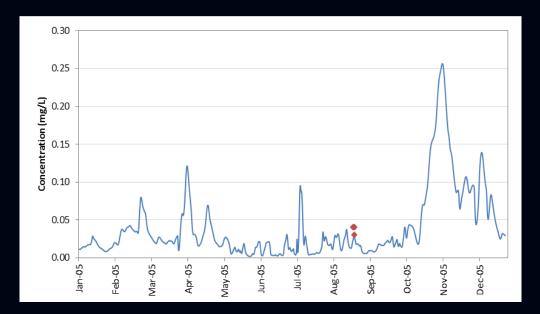
Sampling/Monitoring for TMDL Implementation



James H. Riddle III, PE Project Manager Woolpert Inc. – Columbia, SC

SESWA Conference October 14, 2015

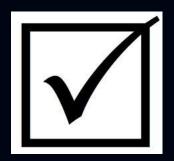
Total Maximum Daily Loads


Typical Supporting Data

- Reliable TMDLs require extensive data
 - Rainfall
 - Flow
 - Water Quality
- Typical Data Sources
 - National Weather Service
 - USGS
 - EPA/State Regulatory Agencies
 - Other Data Sources

Typical Data Limitations

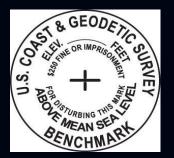
- General Limitations
 - sporadic records due to erratic funding
 - stations discontinued
 - no data within watershed
- Rainfall
 - airport data only
 - lack of time series data
- Flow
 - USGS stations only
 - datum shifts
- Water quality
 - grab samples only
 - insufficient storm water samples
 - no associated weather records or stage information
 - dated data



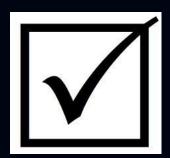
Data is dangerous... do we really want to know?

Data Collection Challenges

- What type of data does the TMDL model require?
- What is the implementation schedule?
- Do I have staff available to collect reliable data?
- Does my staff have the required experience/expertise?
- How much data is needed?
- Do I need ambient or storm water data?
- Should I evaluate BMPs or watershed-scale improvements?
- What type of data collection can my budget support?!?


Possible Paths

Compliance



Best Practices

Benchmark

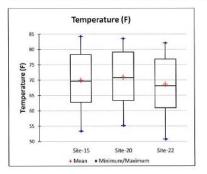
Possible Paths

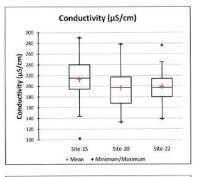
Compliance

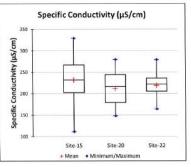
Compliance Approach

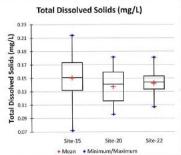
- Grab sampling only
- Analysis of pollutant of concern (POC)
- Minimal samples
 - One storm per quarter
 - Monthly samples

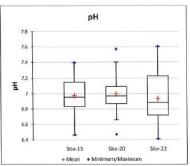
Compliance Approach


- Basic statistics
- Direct comparison to water quality standards


TABLE. Biological Parameter Results and Water Quality Ratings


Client: Greenville County Stream: BE-020 HorsePen Creek @ Georgia Road County: Greenville, SC Collection Date: 6 October 2010


BIOLOGICAL PARAMETER RESULTS	
Parameters	Qualitatitive
1. Taxa Richness	55
(Total Number of Organisms / Site)	585
2. EPT Index	15.0
3. EPT / Chironomid Ratio	6.6
4. Scraper / Filterer Ratio	0.21
5. Biotic Index	5.74
6. % Dominant Taxon	28%
7. Shredder / Total # of Organisms Ratio	0.04
8. Density (#organisms/m²)	NA
	1
SCDHEC BIOCLASSIFICATION SCORE	
EPT Index Score	2.4
Biotic Index Score	3.6
Average Score	3.0
Bioclassification	Good-fair
Aquatic Life Use Support	Partially Supporting


Box and whisker plots for Shingle Creek Sites: 2008-2012 grab sample and corresponding continuous data

Compliance Approach

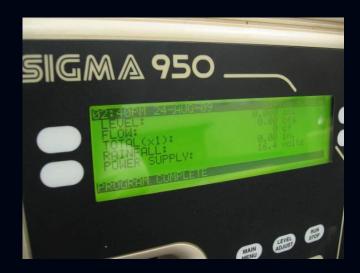
Macroinvertebrate Assessments

TABLE. Biological Parameter Results and Water Quality Ratings

Client: Greenville County Stream: BE-020 HorsePen Creek @ Georgia Road County: Greenville, SC Collection Date: 6 October 2010

BIOLOGICAL PARAMETER RESULTS					
Parameters	Qualitatitive				
1. Taxa Richness	55				
(Total Number of Organisms / Site)	585				
2. EPT Index	15.0				
3. EPT / Chironomid Ratio	6.6				
4. Scraper / Filterer Ratio	0.21				
5. Biotic Index	5.74				
6. % Dominant Taxon	28%				
7. Shredder / Total # of Organisms Ratio	0.04				
8. Density (#organisms/m²)	NA				
	1				
SCDHEC BIOCLASSIFICATION SCORE					
EPT Index Score	2.4				
Biotic Index Score	3.6				
Average Score	3.0				
Bioclassification	Good-fair				
Aquatic Life Use Support	Partially Supporting				

Possible Paths


Best Practices

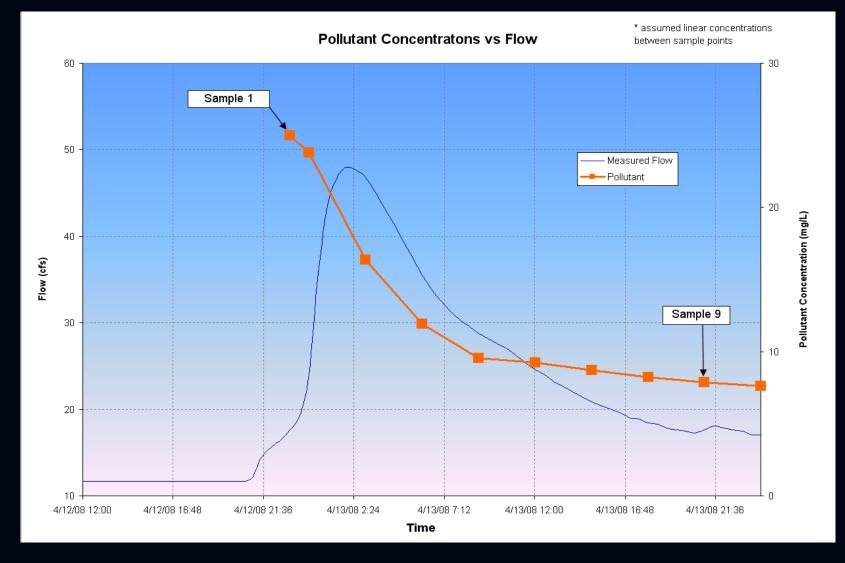
Best Practices Approach

- Varied collection strategies
 - Grab samples
 - Automated samples
 - Targeted or temporary sensor deployment
- Analysis of pollutant of concern (POC) and other indicators
- Sample collection intervals
 - Multiple samples/storm
- Sample frequency
 - ≥2 storm events per season
 - Dry and wet weather sampling
- Flow measurement/approximation

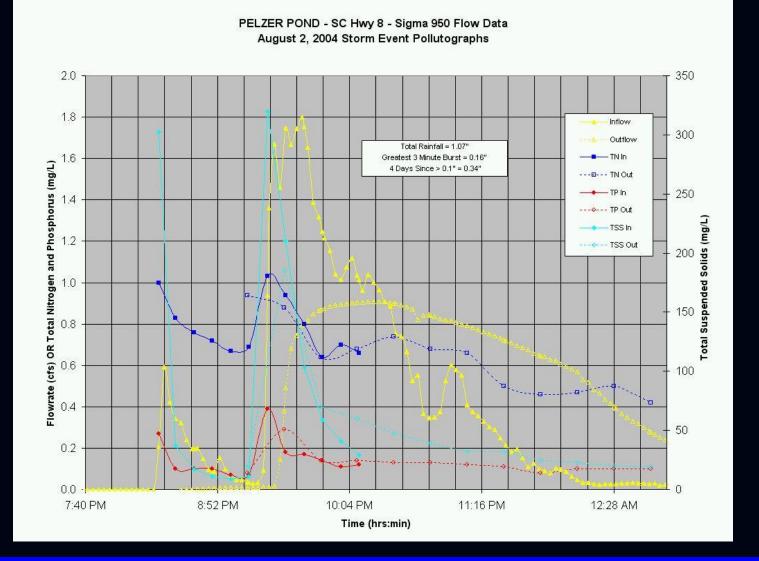
Automated Samplers

Handheld Sonde/Sensors

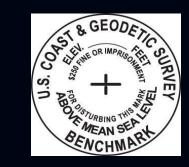
Discharge Measurement



Results


Pollutant	Single Family Residential	Industrial	Office	Commercial	Golf
Total Suspended Solids (TSS), mg/l	187	131	72	77	249
Total Dissolved Solids (TDS), mg/l	69	131	50	45	85
Bio-Chemical Oxygen Demand (BOD5), mg/l	18	6	12	11	12
Chemical Oxygen Demand (COD), mg/l	112	38	40	42	85
Total Phosphorous (TP), mg/l	0.4	0.1	0.2	0.1	0.6
Dissolved Phosphorous (DP), mg/l	0.14	0.03	0.06	0.05	0.20
Total Nitrogen (TN), mg/l	2.82	1.44	1.86	1.53	3.11
Total Kjeldahl Nitrogen (TKN), mg/l	2.23	0.81	1.32	1.12	2.50
Total Cadmium (TCD), mg/l	0.0003	0.0007	0.0003	0.0003	0.0002
Total Copper (TCU), mg/l	0.019	0.135	0.032	0.017	0.016
Total Lead (TPB), mg/l	0.025	0.017	0.011	0.023	0.009
Total Zinc (TZN), mg/l	0.08	0.14	0.14	0.11	0.07

Results



Results

Woolpert Inc.

Possible Paths

Benchmark

Manual Grab Sampling

+ Advantages

- Sample for target pollutant
- Low costs
- Flexibility

+ Disadvantages

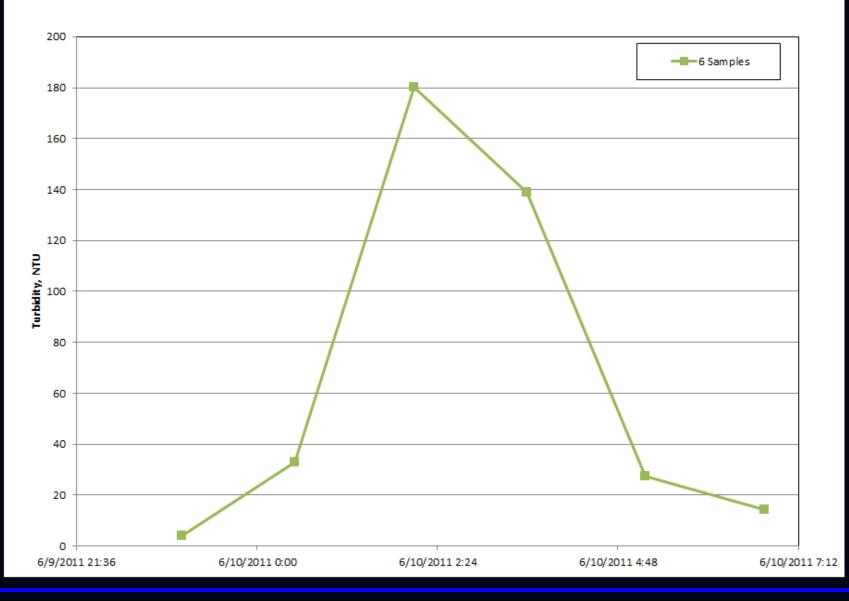
- Highly difficult during storm events
 - + Timing/staff availability
 - + Safety
 - + Non-working hours
 - + Laboratory overtime expenses
- Limited snapshot of water quality, no flow data, and unlikely to detect spills

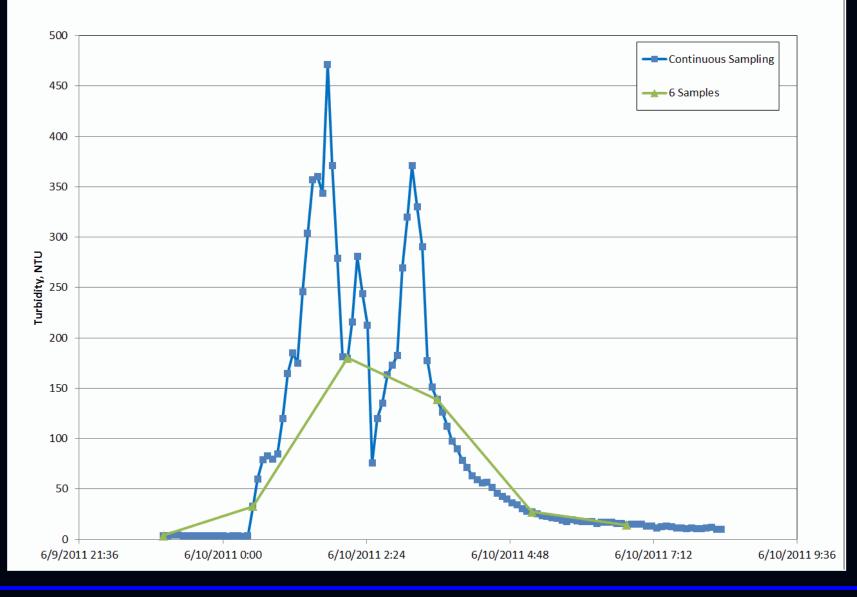
Continuous Monitoring

+ Advantages

- Highly detailed, representative data
- Collection of unattended data
- Detection of illicit discharges
- Stage/flow data
- Proactive

+ Disadvantages

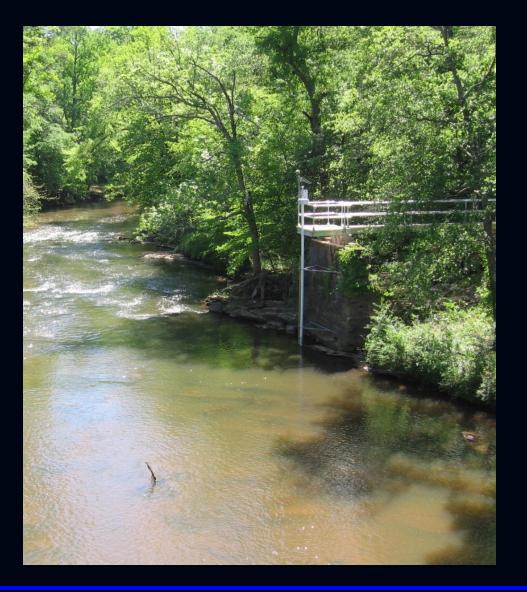

- Sensors require routine calibration
- Detection of limited number of parameters
- Higher costs

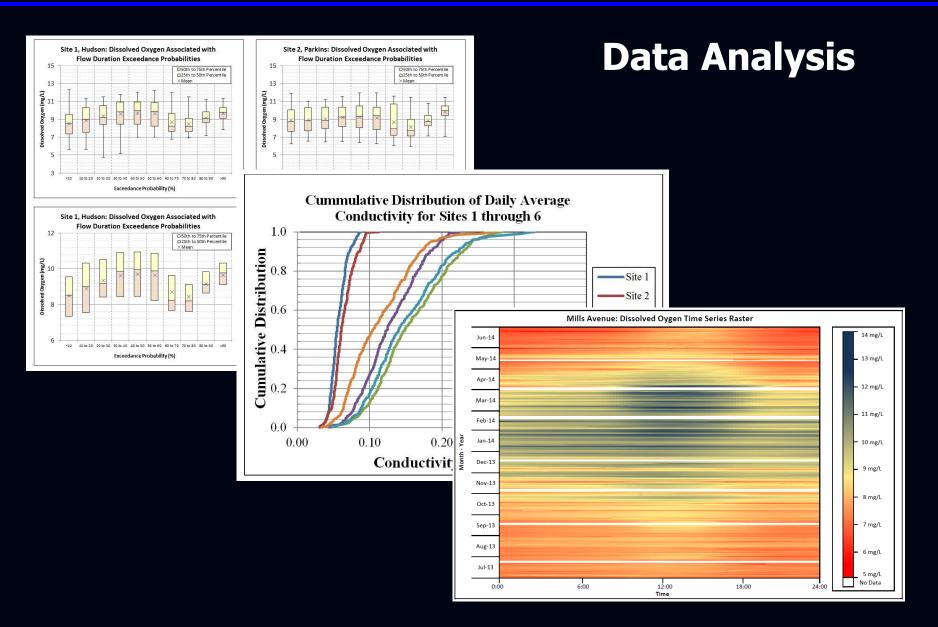


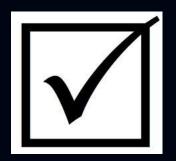
Data Collection Frequency Analysis

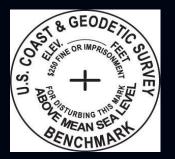
Data Collection Frequency Analysis

Permanent Monitoring Station




Additional Stations




Advantages/Disadvantages

Compliance

Best Practices

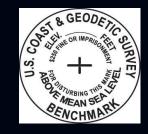
Benchmark

Advantages

- Low front end costs
- Sample for POC
- Could use City/County staff
- Sufficient for Bio sampling

Disadvantages

- Limited data insufficient to identify trends
- Highly unlikely to identify pollutant sources
- Implementation of incorrect BMPs
- Potentially high back end costs



Advantages

- Reasonable costs
- Use municipal staff
- Sufficient data to analyze individual storms
- Ability to narrow focus of pollutant sources
- Less likely to implement inappropriate BMPs

Disadvantages

- Higher front end costs
- Unlikely to identify pollutant sources
- Unlikely to identify causes of Bio issues
- Not enough data to dispute load allocations

Benchmark

Advantages

- Model MS4 program
- Sufficient data to identify pollutant sources and challenge TMDL load allocations
- Considerable long term cost saving due to selection of appropriate BMPs <u>if needed</u>

Disadvantages

- Expensive on front end
- Likely requires on-going consultant assistance

Questions?

